Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Resusc Plus ; 18: 100608, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38524147

RESUMO

Aim of the study: Cardiac arrest research has not received as much scientific attention as research on other topics. Here, we aimed to identify cardiac arrest research barriers from the perspective of an international group of early career researchers. Methods: Attendees of the 2022 international masterclass on cardiac arrest registry research accompanied the Global Out-of-Hospital Cardiac Arrest Registry collaborative meeting in Utstein, Norway, and used an adapted hybrid nominal group technique to obtain a diverse and comprehensive perspective. Barriers were identified using a web-based questionnaire and discussed and ranked during an in-person follow-up meeting. After each response was discussed and clarified, barriers were categorized and ranked over two rounds. Each participant scored these from 1 (least significant) to 5 (most significant). Results: Nine participants generated 36 responses, forming seven overall categories of cardiac arrest research barriers. "Allocated research time" was ranked first in both rounds. "Scientific environment", including appropriate mentorship and support systems, ranked second in the final ranking. "Resources", including funding and infrastructure, ranked third. "Access to and availability of cardiac arrest research data" was the fourth-ranked barrier. This included data from the cardiac arrest registries, medical devices, and clinical studies. Finally, "uniqueness" was the fifth-ranked barrier. This included ethical issues, patient recruitment challenges, and unique characteristics of cardiac arrest. Conclusion: By identifying cardiac arrest research barriers and suggesting solutions, this study may act as a tool for stakeholders to focus on helping early career researchers overcome these barriers, thus paving the road for future research.

2.
Biology (Basel) ; 13(2)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38392338

RESUMO

Corticotropin-releasing factor or hormone (CRF or CRH) and the urocortins regulate a plethora of physiological functions and are involved in many pathophysiological processes. CRF and urocortins belong to the family of CRF peptides (CRF family), which includes sauvagine, urotensin, and many synthetic peptide and non-peptide CRF analogs. Several of the CRF analogs have shown considerable therapeutic potential in the treatment of various diseases. The CRF peptide family act by interacting with two types of plasma membrane proteins, type 1 (CRF1R) and type 2 (CRF2R), which belong to subfamily B1 of the family B G-protein-coupled receptors (GPCRs). This work describes the structure of CRF peptides and their receptors and the activation mechanism of the latter, which is compared with that of other GPCRs. It also discusses recent structural information that rationalizes the selective binding of various ligands to the two CRF receptor types and the activation of receptors by different agonists.

3.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894912

RESUMO

Gonadotropin-releasing hormone (GnRH) is pivotal in regulating human reproduction and fertility through its specific receptors. Among these, gonadotropin-releasing hormone receptor type I (GnRHR I), which is a member of the G-protein-coupled receptor family, is expressed on the surface of both healthy and malignant cells. Its presence in cancer cells has positioned this receptor as a primary target for the development of novel anti-cancer agents. Moreover, the extensive regulatory functions of GnRH have underscored decapeptide as a prominent vehicle for targeted drug delivery, which is accomplished through the design of appropriate conjugates. On this basis, a rationally designed series of anthraquinone/mitoxantrone-GnRH conjugates (con1-con8) has been synthesized herein. Their in vitro binding affinities range from 0.06 to 3.42 nM, with six of them (con2-con7) demonstrating higher affinities for GnRH than the established drug leuprolide (0.64 nM). Among the mitoxantrone based GnRH conjugates, con3 and con7 show the highest affinities at 0.07 and 0.06 nM, respectively, while the disulfide bond present in the conjugates is found to be readily reduced by the thioredoxin (Trx) system. These findings are promising for further pharmacological evaluation of the synthesized conjugates with the prospect of performing future clinical studies.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/síntese química , Antineoplásicos/imunologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Fatores Imunológicos , Terapia de Imunossupressão , Imunossupressores , Mitoxantrona , Neoplasias/tratamento farmacológico , Receptores LHRH/metabolismo
4.
Geriatrics (Basel) ; 8(1)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36826366

RESUMO

Postoperative delirium (POD) is an acute alteration of mental state, characterized by reduced awareness and attention, occurring up to five postoperative days after recovery from anesthesia. Several original studies and reviews have identified possible perioperative POD risk factors; however, there is no comprehensive review of the preoperative risk factors in patients diagnosed with POD using only validated diagnostic scales. The aim of this systematic review was to report the preoperative risk factors associated with an increased incidence of POD in patients undergoing non-cardiac and non-brain surgery. The reviewed studies included original research papers that used at least one validated diagnostic scale to identify POD occurrence for more than 24 h. A total of 6475 references were retrieved from the database search, with only 260 of them being suitable for further review. Out of the 260 reviewed studies, only 165 that used a validated POD scale reported one or more preoperative risk factors. Forty-one risk factors were identified, with various levels of statistical significance. The extracted risk factors could serve as a preoperative POD risk assessment workup. Future studies dedicated to the further evaluation of the specific preoperative risk factors' contributions to POD could help with the development of a weighted screening tool.

5.
Acta Med Acad ; 51(1): 14-20, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35695398

RESUMO

OBJECTIVES: Total Knee Replacement Surgery (TKR) is one of the most common elective orthopedic operations. Postoperative pain after total knee replacement, remains a challenge. In this retrospective observational study, we evaluated the effectiveness of 3-in-1 nerve block in patients after total knee arthroplasty compared to standard opioid treatment, and we state the reasons why this approach should still be considered. METHODS: To evaluate the effectiveness of the 3-in-1 nerve block, we assessed the acute pain service archive and compared the values of the visual analog scale, by separating patients into two groups according to the analgesic regimen they received as per local protocols. In group A, patients received 0.25% bupivacaine through a 3 in 1 block catheter and additional meperidine IM if needed, while in group B they received meperidine every six hours. RESULTS: Our analysis showed the statistically significant better effectiveness of 3-in-1 nerve block with bupivacaine administration in postoperative TKR pain control compared to repeated administration of meperidine. CONCLUSION: The results of our study suggest that 3-in-1 nerve block with bupivacaine is an option that must always be considered in order to alleviate post-operative pain after TKR.


Assuntos
Artroplastia do Joelho , Bloqueio Nervoso , Analgésicos Opioides/uso terapêutico , Anestésicos Locais/uso terapêutico , Artroplastia do Joelho/métodos , Bupivacaína/uso terapêutico , Nervo Femoral , Humanos , Meperidina , Bloqueio Nervoso/métodos , Estudos Observacionais como Assunto , Dor Pós-Operatória/tratamento farmacológico
6.
Expert Rev Respir Med ; 16(4): 375-390, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35354361

RESUMO

INTRODUCTION: : To adhere to the Hippocratic Oath, to 'first, do no harm', we need to make every effort to minimize the adverse effects of mechanical ventilation. Our understanding of the mechanisms of ventilator-induced lung injury (VILI) and ventilator-induced diaphragm dysfunction (VIDD) has increased in recent years. Research focuses now on methods to monitor lung stress and inhomogeneity and targets we should aim for when setting the ventilator. In parallel, efforts to promote early assisted ventilation to prevent VIDD have revealed new challenges, such as titrating inspiratory effort and synchronizing the mechanical with the patients' spontaneous breaths, while at the same time adhering to lung-protective targets. AREAS COVERED: This is a narrative review of the key mechanisms contributing to VILI and VIDD and the methods currently available to evaluate and mitigate the risk of lung and diaphragm injury. EXPERT OPINION: Implementing lung and diaphragm protective ventilation requires individualizing the ventilator settings, and this can only be accomplished by exploiting in everyday clinical practice the tools available to monitor lung stress and inhomogeneity, inspiratory effort, and patient-ventilator interaction.


Assuntos
Diafragma , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Pulmão , Respiração , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Ventiladores Mecânicos/efeitos adversos
7.
Eur J Pharm Sci ; 169: 106084, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856350

RESUMO

Corticotropin-releasing factor (CRF) is a 41-amino-acid neuropeptide secreted from the hypothalamus and is the main regulator of the hypothalamus-pituitary-adrenocortical (HPA) axis. CRF is the master hormone which modulates physiological and behavioral responses to stress. Many disorders including anxiety, depression, addictive disorders and others are related to over activation of the CRF system. This suggests that new molecules which can interfere with CRF binding to its receptors may be potential candidates for neuropsychiatric drugs to treat stress-related disorders. Previously, three series of pyrimidine and fused pyrimidine CRF1 receptor antagonists were synthesized by our group and specific binding assays, competitive binding studies and determination of the ability to antagonize the agonist-stimulated accumulation of cAMP (the second messenger for CRF receptors) were reported. In continuation of our efforts in this direction, in the current manuscript, we report the synthesis & biological evaluation of a new series of CRF1 receptor antagonists. Seven compounds showed promising binding affinity with the best two compounds (compounds 6 & 43) displaying a superior binding affinity to all of our previous compounds. Compounds 6 & 43 have only 4 times and 2 times less binding affinity than the standard CRF antagonist antalarmin, respectively. Thus, our two best lead compounds (compound 6 & 43) can be considered potent CRF receptor antagonists with binding affinity of 41.0 & 19.2 nM versus 9.7 nM for antalarmin.


Assuntos
Hormônio Liberador da Corticotropina , Receptores de Hormônio Liberador da Corticotropina , Pirimidinas/farmacologia
8.
Respir Care ; 66(11): 1699-1703, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34521761

RESUMO

BACKGROUND: The ventilatory ratio (VR) is a simple index of ventilatory efficiency and dead space. Because increased dead space and high ventilatory demands impose a limitation to unassisted ventilation, and may predispose patients to injurious strong efforts during assisted ventilation, evaluation of the VR could provide helpful information during weaning. We hypothesize that there is a threshold of VR associated with tolerance of unassisted breathing. METHODS: In a retrospective analysis, we included subjects ventilated in a control mode for at least 24 h, who were successfully liberated from mechanical ventilation, without use of noninvasive ventilation, and discharged alive from the ICU. We focused on the successful weaning attempts (the last, if more than one was performed) and evaluated the VR at the beginning and at the end of the assisted ventilation period. RESULTS: We examined 2,000 medical records and included in our analysis 572 subjects (age: 68 y, R5-95 = 25-85, 68% male) with main admission diagnosis of respiratory failure (23%), sepsis (11%), brain injury (34%), and postoperative (14%). The VR at the beginning and the end of the assisted ventilation period was 1.5 (R5-95 = 1-2.1) and 1.4 (R5-95 = 1-2), respectively. The median duration of assisted ventilation in subjects with a VR ≥ 2 at the beginning of the assisted ventilation period was 3 d (R5-95 = 0-14 d), significantly longer than in those with a VR < 2, 0.5 d (R5-95 = 0-8 d, P < .001). CONCLUSIONS: Successful liberation from assisted ventilation was associated with a VR < 2. A VR > 2 was associated with longer duration of weaning. The VR could be used as an additional tool to facilitate the decision-making process during weaning.


Assuntos
Ventilação não Invasiva , Desmame do Respirador , Idoso , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Respiração Artificial , Estudos Retrospectivos
9.
Bioorg Chem ; 114: 105079, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34174633

RESUMO

Corticotrophin releasing factor receptor-1 (CRFR1) is a potential target for treatment of depression and anxiety through modifying stress response. A series of new thiazolo[4,5-d]pyrimidine derivatives were designed, prepared and biologically evaluated as potential CRFR1 antagonists. Four compounds produced more than fifty percent inhibition in the [125I]-Tyr0-sauvagine specific binding assay. Assessment of binding affinities revealed that compound (3-(2,4-dimethoxyphenyl)-7-(dipropylamino)-5-methylthiazolo[4,5-d]pyrimidin-2(3H)-one) 8c was the best candidate with highest binding affinity (Ki = 32.1 nM). Further evaluation showed the ability of compound 8c to inhibit CRF induced cAMP accumulation in a dose response manner. Docking and molecular dynamics simulations were used to investigate potential binding modes of synthesized compounds as well as the stability of 8c-CRFR1 complex. These studies suggest similar allosteric binding of 8c compared to that of the co-crystalized ligand CP-376395 in 4K5Y pdb file.


Assuntos
Simulação de Dinâmica Molecular , Pirimidinas/farmacologia , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Tiazóis/farmacologia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
10.
Amino Acids ; 52(9): 1337-1351, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32996057

RESUMO

The corticotropin-releasing factor (CRF) and its CRF1 receptor (CRF1R) play a central role in the maintenance of homeostasis. Malfunctioning of the CRF/CRF1R unit is associated with several disorders, such as anxiety and depression. Non-peptide CRF1R-selective antagonists have been shown to exert anxiolytic and antidepressant effects on experimental animals. However, none of them is in clinical use today because of several side effects, thus demonstrating the need for the development of other more suitable CRF1R antagonists. In an effort to develop novel CRF1R antagonists we designed, synthesized and chemically characterized two tripeptide analogues of CRF, namely (R)-LMI and (S)-LMI, having their Leu either in R (or D) or in S (or L) configuration, respectively. Their design was based on the crystal structure of the N-extracellular domain (N-domain) of CRF1R/CRF complex, using a relevant array of computational methods. Experimental evaluation of the stability of synthetic peptides in human plasma has revealed that (R)-LMI is proteolytically more stable than (S)-LMI. Based on this finding, (R)-LMI was selected for pharmacological characterization. We have found that (R)-LMI is a CRF antagonist, inhibiting (1) the CRF-stimulated accumulation of cAMP in HEK 293 cells expressing the CRF1R, (2) the production of interleukins by adipocytes and (3) the proliferation rate of RAW 264.7 cells. (R)-LMI likely blocked agonist actions by interacting with the N-domain of CRF1R as suggested by data using a constitutively active chimera of CRF1R. We propose that (R)-LMI can be used as an optimal lead compound in the rational design of novel CRF antagonists.


Assuntos
AMP Cíclico/metabolismo , Descoberta de Drogas , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Proliferação de Células , Células HEK293 , Humanos , Camundongos , Domínios Proteicos , Células RAW 264.7
11.
Chem Biol Drug Des ; 96(1): 668-683, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32691965

RESUMO

Irbesartan (IRB) exerts beneficial effects either alone or in combination with other drugs on numerous diseases, such as cancer, diabetes, and hypertension. However, due to its high lipophilicity, IRB does not possess the optimum pharmacological efficiency. To circumvent this problem, a drug delivery system with 2-hydroxypropyl-ß-cyclodextrin (2-HP-ß-CD) was explored. The 1:1 complex between IRB and 2-HP-ß-CD was identified through ESI QTF HRMS. Dissolution studies showed a higher dissolution rate of the lyophilized IRB-2-HP-ß-CD complex than the tablet containing IRB at pH = 1.2. DSC results revealed the differences of the thermal properties between the complex and various mixtures consisting of the two components, namely IRB and 2-HP-ß-CD. Interestingly, depending on the way the mixture preparation was conducted, different association between the two components was observed. Molecular dynamics (MD) simulations predicted the favorable formation of the above complex and identified the dominant interactions between IRB and 2-HP-ß-CD. In vitro pharmacological results verified that the inclusion complex not only preserves the binding affinity of IRB for AT1R receptor, but also it slightly increases it. As the complex formulation lacks the problems of the tablet, our approach is a promising new way to improve the efficiency of IRB.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Anti-Hipertensivos/química , Irbesartana/química , Anti-Hipertensivos/farmacologia , Composição de Medicamentos , Liberação Controlada de Fármacos , Liofilização , Humanos , Conformação Molecular , Simulação de Dinâmica Molecular , Solubilidade , Espectrometria de Massas por Ionização por Electrospray
12.
Amino Acids ; 51(7): 1009-1022, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31079216

RESUMO

Neurotensin (NT) (pGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu) exerts a dual function as a neurotransmitter/neuromodulator in the central nervous system and as a hormone/cellular mediator in periphery. This dual function of NT establishes a connection between brain and peripheral tissues that renders this peptide a central player in energy homeostasis. Many biological actions of NT are mediated through its interaction with three types of NT receptors (NTS receptors). Despite its role in energy homeostasis, NT has a short half-life that hampers further determination of the biological actions of this peptide and its receptors in brain and periphery. The short half-life of NT is due to the proteolytic degradation of its C-terminal side by several endopeptidases. Therefore, it is important to synthesize NT analogues with resistant bonds against metabolic deactivation. Based on these findings, we herein report the synthesis of ten linear, two cyclic and two dimeric analogues of NT with modifications in its structure that improve their metabolic stability, while retaining the ability to bind to NTS receptors. Modifications at position 11 (introduction of D-Tyrosine (OEthyl) [D-Tyr(Et)] or D-1-naphtylalanine [D-1-Nal] were combined with introduction of a L-Lysine or a D-Arginine at positions 8 or 9, and 1-[2-(aminophenyl)-2-oxoethyl]-1H-pyrrole-2-carboxylic acid (AOPC) at positions 7 or 8, resulting in compounds NT4-NT21. AOPC is an unnatural amino acid with promise in applications as a building block for the synthesis of peptidomimetic compounds. To biologically evaluate these analogues, we determined their plasma stability and their binding affinities to type 1 NT receptor (NTS1), endogenously expressed in HT-29 cells, Among the fourteen NT analogues, compounds, NT5, NT6, and NT8, which have D-Tyr(Et) at position 11, bound to NTS1 in a dose-response manner and with relatively high affinity but still lower than that of the natural peptide. Despite their lower binding affinities compared to NT, the NT5, NT6, and NT8 exhibited a remarkably higher stability, as a result of their chemistry, which provides protection from enzymatic activity. These results will set the basis for the rational design of novel NT molecules with improved pharmacological properties and enhanced enzymatic stability.


Assuntos
Aminoácidos/química , Neurotensina/química , Peptidomiméticos/síntese química , Peptidomiméticos/metabolismo , Sequência de Aminoácidos , Técnicas de Química Sintética , Cromatografia Líquida de Alta Pressão , Células HT29 , Humanos , Espectrometria de Massas , Modelos Moleculares , Simulação de Dinâmica Molecular , Peptidomiméticos/farmacologia , Receptores de Neurotensina/química
13.
Hormones (Athens) ; 18(2): 215-221, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30980254

RESUMO

The corticotrophin-releasing factor (CRF) and its type 1 receptor (CRF1R) regulate the hypothalamic-pituitary-adrenal axis, as well as other systems, thus playing a crucial role in the maintenance of homeostasis. Non-peptide CRF1R-selective antagonists exert therapeutic effects on experimental animals with abnormal regulation of their homeostatic mechanisms. However, none of them is as yet in clinical use. In an effort to develop novel small non-peptide CRF1R-selective antagonists, we have synthesized a series of substituted pyrimidines described in a previous study. These small molecules bind to CRF1R, with analog 3 having the highest affinity. Characteristic structural features of analog 3 are a N,N-bis(methoxyethyl)amino group at position 6 and a methyl in the alkythiol group at position 5. Based on the binding profile of analog 3, we selected it in the present study for further pharmacological characterization. The results of this study suggest that analog 3 is a potent CRF1R-selective antagonist, blocking the ability of sauvagine, a CRF-related peptide, to stimulate cAMP accumulation in HEK 293 cells via activation of CRF1R, but not via CRF2R. Moreover, analog 3 blocked sauvagine to stimulate the proliferation of macrophages, further supporting its antagonistic properties. We have also constructed molecular models of CRF1R to examine the interactions of this receptor with analog 3 and antalarmin, a prototype CRF1R-selective non-peptide antagonist, which lacks the characteristic structural features of analog 3. Our data facilitate the design of novel non-peptide CRF1R antagonists for clinical use.


Assuntos
Ansiolíticos/síntese química , Antidepressivos/síntese química , Pirimidinas/química , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Proteínas de Anfíbios/química , Proteínas de Anfíbios/farmacologia , Animais , Ansiolíticos/química , Ansiolíticos/farmacologia , Antidepressivos/química , Antidepressivos/farmacologia , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Hormônios Peptídicos/química , Hormônios Peptídicos/farmacologia , Pirimidinas/síntese química , Pirimidinas/farmacologia , Células RAW 264.7 , Relação Estrutura-Atividade
14.
Mol Pharm ; 16(3): 1255-1271, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30681344

RESUMO

Renin-angiotensin aldosterone system inhibitors are for a long time extensively used for the treatment of cardiovascular and renal diseases. AT1 receptor blockers (ARBs or sartans) act as antihypertensive drugs by blocking the octapeptide hormone Angiotensin II to stimulate AT1 receptors. The antihypertensive drug candesartan (CAN) is the active metabolite of candesartan cilexetil (Atacand, CC). Complexes of candesartan and candesartan cilexetil with 2-hydroxylpropyl-ß-cyclodextrin (2-HP-ß-CD) were characterized using high-resolution electrospray ionization mass spectrometry and solid state 13C cross-polarization/magic angle spinning nuclear magnetic resonance (CP/MAS NMR) spectroscopy. The 13C CP/MAS results showed broad peaks especially in the aromatic region, thus confirming the strong interactions between cyclodextrin and drugs. This experimental evidence was in accordance with molecular dynamics simulations and quantum mechanical calculations. The synthesized and characterized complexes were evaluated biologically in vitro. It was shown that as a result of CAN's complexation, CAN exerts higher antagonistic activity than CC. Therefore, a formulation of CC with 2-HP-ß-CD is not indicated, while the formulation with CAN is promising and needs further investigation. This intriguing result is justified by the binding free energy calculations, which predicted efficient CC binding to 2-HP-ß-CD, and thus, the molecule's availability for release and action on the target is diminished. In contrast, CAN binding was not favored, and this may allow easy release for the drug to exert its bioactivity.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Bloqueadores do Receptor Tipo 1 de Angiotensina II/química , Benzimidazóis/química , Compostos de Bifenilo/química , Composição de Medicamentos/métodos , Pró-Fármacos/química , Tetrazóis/química , Proteínas Adaptadoras de Transdução de Sinal/química , Benzimidazóis/síntese química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Células HEK293 , Humanos , Ligação de Hidrogênio , Conformação Molecular , Simulação de Dinâmica Molecular , Sistema Renina-Angiotensina , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray , Tetrazóis/síntese química
15.
Hormones (Athens) ; 17(1): 45-59, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29858864

RESUMO

Family B of G-protein-coupled receptors (GPCRs) and their ligands play a central role in a number of homeostatic mechanisms in the endocrine, gastrointestinal, skeletal, immune, cardiovascular and central nervous systems. Alterations in family B GPCR-regulated homeostatic mechanisms may cause a variety of potentially life-threatening conditions, signifying the necessity to develop novel ligands targeting these receptors. Obtaining structural and functional information on family B GPCRs will accelerate the development of novel drugs to target these receptors. Family B GPCRs are proteins that span the plasma membrane seven times, thus forming seven transmembrane domains (TM1-TM7) which are connected to each other by three extracellular (EL) and three intracellular (IL) loops. In addition, these receptors have a long extracellular N-domain and an intracellular C-tail. The upper parts of the TMs and ELs form the J-domain of receptors. The C-terminal region of peptides first binds to the N-domain of receptors. This 'first-step' interaction orients the N-terminal region of peptides towards the J-domain of receptors, thus resulting in a 'second-step' of ligand-receptor interaction that activates the receptor. Activation-associated structural changes of receptors are transmitted through TMs to their intracellular regions and are responsible for their interaction with the G proteins and activation of the latter, thus resulting in a biological effect. This review summarizes the current information regarding the structure and function of family B GPCRs and their physiological and pathophysiological roles.


Assuntos
Desenho de Fármacos , Receptores Acoplados a Proteínas G/química , Humanos , Ligantes , Ligação Proteica , Conformação Proteica
16.
Eur J Med Chem ; 145: 273-290, 2018 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-29329002

RESUMO

AT1 antagonists is the most recent drug class of molecules against hypertension and they mediate their actions through blocking detrimental effects of angiotensin II (A-II) when acts on type I (AT1) A-II receptor. The effects of AT1 antagonists are not limited to cardiovascular diseases. AT1 receptor blockers may be used as potential anti-cancer agents - due to the inhibition of cell proliferation stimulated by A-II. Therefore, AT1 receptors and the A-II biosynthesis mechanisms are targets for the development of new synthetic drugs and therapeutic treatment of various cardiovascular and other diseases. In this work, multi-scale molecular modeling approaches were performed and it is found that oxazolone and imidazolone derivatives reveal similar/better interaction energy profiles compared to the FDA approved sartan molecules at the binding site of the AT1 receptor. In silico-guided designed hit molecules were then synthesized and tested for their binding affinities to human AT1 receptor in radioligand binding studies, using [125I-Sar1-Ile8] AngII. Among the compounds tested, 19d and 9j molecules bound to receptor in a dose response manner and with relatively high affinities. Next, cytotoxicity and wound healing assays were performed for these hit molecules. Since hit molecule 19d led to deceleration of cell motility in all three cell lines (NIH3T3, A549, and H358) tested in this study, this molecule is investigated in further tests. In two cell lines (HUVEC and MCF-7) tested, 19d induced G2/M cell cycle arrest in a concentration dependent manner. Adherent cells detached from the plates and underwent cell death possibly due to apoptosis at 19d concentrations that induced cell cycle arrest.


Assuntos
Anti-Hipertensivos/farmacologia , Antineoplásicos/farmacologia , Descoberta de Drogas , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Imidazóis/farmacologia , Oxazolona/farmacologia , Animais , Anti-Hipertensivos/síntese química , Anti-Hipertensivos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Imidazóis/síntese química , Imidazóis/química , Camundongos , Modelos Moleculares , Estrutura Molecular , Células NIH 3T3 , Oxazolona/síntese química , Oxazolona/química , Relação Estrutura-Atividade
17.
Curr Med Chem ; 24(31): 3323-3355, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28266266

RESUMO

BACKGROUND: Family B G protein-coupled receptors (GPCRs) play an important role in many physiological and pathophysiological processes. They are plasma-membrane proteins containing an extracellular N-domain, an intracellular C-tail, seven transmembrane domains (TMs), three extracellular (ELs) and three intracellular (ILs) loops. OBJECTIVE: This review aims to summarize the current structural and functional information for family B GPCRs and their ligands, as well as, their physiological and pathophysiological role. METHODS: Α thorough search of bibliographic databases for peer-reviewed research literature was undertaken. Moreover, molecular models of family B GPCRs were constructed and a structural alignment of their amino acid sequences was performed to demonstrate common structural characteristics. RESULTS: In this review the family B GPCRs and their complexes with the receptor activity modifying proteins (RAMPs) were classified into five groups and the important physiological and pathophysiological role of these receptors was summarized. In addition, conserved residues of the Ndomain and the TMs of these receptors were numbered, thus making feasible the comparison of receptor structures and demonstrating common structural characteristics that are functionally important for all family B receptors. Molecular models created in this study were used to discuss the molecular mechanisms underlying ligand binding to family B GPCRs and receptor activation. CONCLUSION: The findings of this review provide information about the structural-functional determinants of family B GPCRs and their ligands, thus boosting the design of novel drugs with better potencies and bioavailabilities, which might enrich the therapeutic armory for the treatment of a wide spectrum of family B GPCRs-related disorders.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Regulação Alostérica , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Ligantes , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores
18.
Bioorg Med Chem ; 24(18): 4444-4451, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27480029

RESUMO

Nowadays, AT1 receptor (AT1R) antagonists (ARBs) constitute the one of the most prevalent classes of antihypertensive drugs that modulate the renin-angiotensin system (RAS). Their main uses include also treatment of diabetic nephropathy (kidney damage due to diabetes) and congestive heart failure. Towards this direction, our study has been focused on the discovery of novel agents bearing different scaffolds which may evolve as a new class of AT1 receptor antagonists. To fulfill this aim, a combination of computational approaches and biological assays were implemented. Particularly, a pharmacophore model was established and served as a 3D search query to screen the ChEMBL15 database. The reliability and accuracy of virtual screening results were improved by using molecular docking studies. In total, 4 compounds with completely diverse chemical scaffolds from potential ARBs, were picked and tested for their binding affinity to AT1 receptor. Results revealed high nanomolar to micromolar affinity (IC50) for all the compounds. Especially, compound 4 exhibited a binding affinity of 199nM. Molecular dynamics simulations were utilized in an effort to provide a molecular basis of their binding to AT1R in accordance to their biological activities.


Assuntos
Antagonistas de Receptores de Angiotensina/farmacologia , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Antagonistas de Receptores de Angiotensina/química , Concentração Inibidora 50 , Ligantes , Simulação de Dinâmica Molecular , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...